A High Effective Fuzzy Synthetic Evaluation Multi-model Estimation
نویسندگان
چکیده
In view of the questions that the algorithm flow of variable structure multi-model method (VSMM) is too complex and the tracking performance is inefficient and therefore it is so difficult to apply VSMM into installing equipment. The paper presents a high-performance variable structure multi-model method basing on multi-factor fuzzy synthetic evaluation (HEFS_VSMM). Under the guidance of variable structure method, HEFS_VSMM uses the technique of multi-factor fuzzy synthetic evaluation in the strategy of model set adaptive to select the appropriate model set in real time and reduce the computation complexity of the model evaluation, firstly. Secondly, select the model set center according to the evaluation results of each model and set the property value for current model set. Thirdly, choose different processes basing on the current model set property value to simplify the logical complexity of the algorithm. At last, the algorithm gets the total estimation by the theories of optimal information fusion on the above-mentioned processing results. The results of simulation show that, compared with the FSMM and EMA, the mean of estimation error belonging to position, velocity and acceleration in the HEFS_VSMM is improved from -0.029 (m), -0.350 (m/s), -10.051(m/s2) to -0.023 (m), 0.052 (m/s), -5.531 (m/s2). The algorithm cycle is reduced from 0.0051(s) to 0.0025 (s). Copyright © 2014 IFSA Publishing, S. L.
منابع مشابه
The Integration of Multi-Factor Model of Capital Asset Pricing and Penalty Function for Stock Return Evaluation
One of the main concerns of investors is the evaluation of the return on investment, which is conducted using various models such as the CAPM (single-factor model), Fama-French three/five-factor models, and Roy and Shijin’s six-factor model and other models known as multi-factor models. Despite the widespread use of these models, their major drawbacks include sensitivity to unexpected changes, ...
متن کاملMulti-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study
Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of...
متن کاملGrade estimation of Zu2 Jajarm deposit by considering imprecise variogram model parameters based on the extension principle
Nowadays, kriging has been accepted as the most common method of grade estimation in mineral resource evaluation stage. Access to the crisp assay data and a variogram model are the necessary means for the utilization of this method. Since fitting a crisp variogram model is generally difficult, if not impossible, the fitted theoretical model is usually tainted with uncertainty due to various rea...
متن کاملAn Entropy Decision Model for Selection of Enterprise Resource Planning System
There exist some several method offer similar functions and current technologies are poor to discriminate the important weights of attributes of enterprise resource planning system, due to the complexity of metrics and involvement of consumer’s vague perception. Entropy method is used to determine the weight of evaluation indexes and establish multi-level fuzzy synthetic evaluation model. Its a...
متن کاملInverse DEA Model with Fuzzy Data for Output Estimation
In this paper, we show that inverse Data Envelopment Analysis (DEA) models can be used to estimate output with fuzzy data for a Decision Making Unit (DMU) when some or all inputs are increased and deficiency level of the unit remains unchanged.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014